Texas Public School Rankings Methodology SPECIAL PANDEMIC EDITION

I. Introduction

ABOUT CHILDREN AT RISK
CHILDREN AT RISK (C@R) is a 501(c)3 non-profit, non-partisan research and advocacy organization dedicated to addressing the root causes of social problems impacting Texas children through research, collaboration advocacy, and public policy. The organization began in the fall of 1989 when a group of Houston child advocates met to discuss the lack of documentation on the status of children and the absence of strong public policy support for youth. Today, C@R works to improve the quality of life for children across Texas.

ABOUT CHILDREN AT RISK'S SCHOOL RANKINGS

The school ranking system, first developed by C@R in 2006, highlights the successes as well as need for improvement of Texas' public schools. As a research and advocacy organization, the purpose of the rankings is not only to provide a tool for parents and students, but also to provide information for campuses and districts on how they perform relative to their peers, comparing them against successful models of high-performing public schools. In 2009, C@R began to include all eligible high schools in the state of Texas and extended the ranking system to include eligible elementary and middle school campuses. Thus far, C@R's school rankings have proven to be instrumental in generating conversations among educators and the public regarding methods for improving our public education system. In addition, the school rankings aim to:

- Serve as an accessible guide for parents, educators, and community members on the performance of local schools.
- Generate conversations not just about the data used in the rankings, but around how schools and districts are performing overall in creating college-ready students.
- Be transparent. Research is strongest when it is made available to the public and open to scrutiny. Thus, discussion can be generated, the ranking methodology can be improved, and all districts can utilize this as a responsive tool to assessing campuses.
- Encourage the use of data in public school reform. The rankings have successfully promoted data analysis at the campus and district level, aided teacher and staff professional development, helped leadership allocate funds to better serve children and supported changes in strategic planning.

Each year, C@R re-examines its methodology of ranking schools to ensure that the rankings most accurately reflect school performance, utilize the most appropriate data available, and incorporate feedback from educators, researchers, and service providers.

II. Methods

SCHOOL RANKINGS PANDEMIC EDITION OVERVIEW

For more than a decade, CHILDREN AT RISK (C@R) has ranked and graded Texas public schools to help parents, educators, and community members understand how schools in their community are performing, and to spark dialogue on the quality of public education across Texas. This year, when CHILDREN AT RISK would normally be putting out the $\mathbf{2 0 2 0}$ School
Rankings, we will instead be releasing the School Rankings: PANDEMIC EDITION. This analysis is different from our previous iterations because very little 2019-2020 academic data is available due to Covid-19, thus this analysis focuses on consistency leading up to the pandemic.

The goal of the PANDEMIC EDITION of the school rankings is to determine the consistency and resiliency of schools and districts going into Covid-19. In this time of uncertainty, it is more important than ever to monitor our students' progress in a meaningful way. Given the lack of 2019-2020 academic data, this is challenging. To provide new and meaningful metrics that can be used to understand campus and district performance during crisis, we chose to conduct a series of three-year tests that demonstrate campus and district consistency over time. This predicts which schools and students may have entered the 2020-2021 school year more prepared, and those who might have started this atypical school year already well behind.

For the PANDEMIC EDITION of the School Rankings, data from the last three School Rankings iterations is used to calculate new three-year aggregate scores. This includes data from the 201617, 2017-18, and 2018-19 academic years. One index in the analysis consists of data released from TEA in 2020 and that is the College Readiness Indicator. Only this new data is used to calculate College Readiness, whereas the remaining indicators use historical data. In addition, the PANDEMIC EDITION of the School Rankings has the following new components: a Racial Equity Index to calculate as part of overall score, a Consistent Gold Ribbon sublist, a Pace Setter sublist, and a Pandemic Proof Schools sublist.

All elementary and middle school campuses in Texas are ranked across four indices: Student Achievement, Campus Performance, Growth, and Racial Equity. High schools are ranked across five indices: Student Achievement, Campus Performance, Growth, Racial Equity, and College Readiness. Within each index, a weighted index score is calculated for each campus. Using the index scores, a weighted average is computed to create an overall composite index. A state rank is determined as the order in which campuses are listed when the weighted composite indices are sorted from highest to lowest, relative to other schools serving the same grade levels (i.e., Elementary, Middle, High). A letter grade is then assigned based on the campus' ranked composite score.

INDICES

Student Achievement Index

The Student Achievement Index reflects raw performance in key academic areas. It accounts for one-fourth or 25% of elementary and middle school campuses' overall rank and 20% of high school campuses' overall rank in the PANDEMIC EDITION. In the PANDEMIC EDITION of the School Rankings, the Student Achievement Score is aggregated from the Student Achievement Index Score for academic years 2016-17, 2017-18, and 2018-19. For each academic year, the percentage of students at an elementary or middle school campus who Meet Grade Level on the STAAR Reading Exam for their respective grade level accounts for 50% of the Student Achievement Index. The percentage of students at an elementary or middle school campus who Meet Grade Level on the STAAR Math Exam for their respective grade level accounts for the other 50\% of the Student Achievement Index. For high school campuses the percentage of students who Meet Grade Level on the English I or English II STAAR End of Course Exam for their respective grade level account for 50% of the Student Achievement Index. For high school campuses the percentage of students who Meet Grade Level on the Algebra I End of Course Exam for their respective grade level account for the other 50\% of the Student Achievement Index.

Beginning 2017-2018, Texas Education Agency (TEA) allows schools to substitute students' STAAR scores with ACT, SAT, and/or PSAT scores at the Meet Grade Level on the Algebra I, English I, and English II End of Course Exam if aforementioned scores are at or above predetermined college ready cut scores. Accepted substitute exams districts who supply count of substitute exams by school and End of Course Exam were accounted for in the Campus Performance Index. If fewer than 15 students took Algebra 1 or English 1+2, the TAPR score was substituted or the STAAR aggregate score was kept, this was determined based on whichever score was higher.

Campus Performance Index

Since raw academic measurements, such as those in the Student Achievement Index, have a bias toward campuses with low percentages of economically disadvantaged students. The Campus Performance Index captures performance on the Student Achievement indicators using values adjusted for the percentage of economically disadvantaged students at each campus. The Campus Performance Index is created to measure the effectiveness of the educators and programs at a campus independent of the differences in the percentage of economically disadvantaged students at each campus. The Campus Performance Index accounts for one-third or 25% of elementary and middle school campuses' overall rank and 20% of high school campuses' overall rank in the PANDEMIC EDITION. In the PANDEMIC EDITION of the School Rankings, the Campus Performance Score is aggregated up from Campus Performance Index Score for academic years 2016-17, 2017-18, and 2018-19. For each academic year, the Campus Performance Index utilizes a linear regression analysis to demonstrate the relationship between the percentage of economically disadvantaged students and their performance on the indicators that compose the Student Achievement Index. Using the regression analysis, a campus' deviation from its expected score based on the proportion of its student body which is
economically disadvantaged is calculated. Deviation from the expected value is defined as the difference between the actual pass rate of a campus and its forecasted pass rate as defined by the regression line in the analysis. Each campus receives a positive or negative deviation score. A positive deviation score indicates a campus performed better than anticipated, while a negative deviation score indicates a campus performed worse than anticipated given the percentage of economically disadvantaged students at their respective campus. A campus' deviation score is then added to its Student Achievement Score calculated in Index I. See below example:

Student Achievement Score (\% of students that Meet Grade Level)	Campus Performance Deviation Score (difference between the actual pass rate of a campus and its forecasted pass rate)	Campus Performance Score (Student Achievement Score + Campus Performance Deviation Score)
60	13	$=73$

The above example shows that a campus has a deviation score of 13 , meaning that they performed 13 percentage points higher than expected or forecasted. Those 13 points are then added to the campus' raw Student Achievement Score. In contrast, if a school performed worse than expected its campus performance deviation score is negative and is subtracted from the Student Achievement Score.

Beginning 2017-2018, Texas Education Agency (TEA) allows schools to substitute students' STAAR scores with ACT, SAT, and/or PSAT scores at the Meet Grade Level on the Algebra I, English I, and English II End of Course Exam if aforementioned scores are at or above predetermined college ready cut scores. Accepted substitute exams districts who supply count of substitute exams by school and End of Course Exam were accounted for in the Campus Performance Index. If fewer than 15 students took Algebra 1 or English 1+2, the TAPR score was substituted or the STAAR aggregate score was kept, this was determined based on whichever score was higher.

Growth Index

The Growth Index captures improvement over time in standardized test scores. The Growth Index accounts for one-third or 25% of elementary and middle school campuses' overall rank and 20% of high school campuses' overall rank in the PANDEMIC EDITION. In the PANDEMIC EDITION of the School Rankings, the Growth Score is aggregated from Growth Index Score for academic years 2016-17, 2017-18, and 2018-19. For each academic year, the Growth Index is composed of gain scores in math and reading, which measure student level performance relative to a student's peers. A student's test-score peers are other students, statewide, who took the same grade and subject-matter test the previous year and received the same score. Thus, the peer group for a $6^{\text {th }}$ grade math student who scored a 20 on the 5 th grade STAAR Englishlanguage Math test is all students across the state that also scored a 20 on the 5 th grade STAAR English-language Math test. The year-to-year difference is standardized, and then transformed
into a normal curve equivalent score for ease of interpretation. A normal curve equivalent score is a version of a standardized score that can be interpreted as percentile ranks in a normal distribution. A campus' math gain score is an average of the individual student math gain scores; a campus' reading gain score is an average of the individual students reading gain scores. In the rare instance that a campus' gain score could not be calculated for one subject, the other subject gain score is used for both gain scores. In the rarer event that neither a math nor a reading gain score could be calculated for a campus, they were dropped from the rankings. The exams utilized to calculate the gain scores are the same exams utilized to calculate the Student Achievement Index and the Campus Performance Index in the gain score calculations include: STAAR Reading, STAAR Math, English I EOC, English II EOC, and Algebra I EOC. Substitute exams are not accounted for in the growth index due to lack of available individual student level data about substitute exam takers and their scores.

Racial Equity Index

The Racial Equity Index is a comparative measure indicating how well schools are serving students of color. The Racial Equity Index accounts for 25% of elementary and middle school campuses' and 20% of high school campuses' overall rank. This new indicator is an index accounting for relative performance based on campus race/ethnicity demographics, ratio of economically disadvantaged students that meet or exceeds grade level at that campus which measures performance for economically disadvantaged students, and ratio of students of color that meet or exceeds grade level at that campus which measures performance for students of color.

Each campus receives three scores that are weighted to create the overall Racial Equity Index: relative performance, student of color performance, and economically disadvantaged performance. A high relative performance score indicates a campus performed better than anticipated, while a lower relative performance score indicates a campus performed worse than anticipated given the percentage of students of color at their respective campus. The student of color performance score is calculated by determining the percentage of students of color that meet or exceed grade level and subtracted from the overall campus meets or exceeds percentage. The economically disadvantaged performance score is calculated by determining the percentage of economically disadvantaged students that meet or exceed grade level and subtracted from the overall campus meets or exceeds percentage. The campus' relative performance score (RP below), student of color performance score (SCP below), and economically disadvantaged performance score (EDP below) are each added to the campus' overall Student Achievement Score calculated in Index I. These three new scores are weighted and added together to create the final Racial Equity Score for that campus. See the equation below:

$$
\text { Racial Equity Index }=\left(\mathrm{RP}^{*} .3\right)+\left(\mathrm{SCP}{ }^{*} .3\right)+\left(\mathrm{EDP}^{*} .4\right)
$$

College Readiness Index (High Schools Only)

The College Readiness Index measures college readiness of high school students at a given campus. The College Readiness Index accounts for 20% of high school campuses' overall rank in the PANDEMIC EDITION. The CHILDREN AT RISK graduation rate (see below), the participation rates for SAT/ACT and AP/IB exams, average SAT and ACT composite scores, and the percent of examinees above the AP/IB criterion score are Included in the College Readiness Index. The average ACT and SAT scores are converted into percentiles for campus to campus comparison. Each indicator has a predetermined weight, and the weighted average of these indicators becomes the College Readiness Index. The following table shows the weight of each indicator in the College Readiness Index:

C@R Graduation Rate (see below) 60\%
SAT/ACT Participation Rate 10\%
AP/IB Participation Rate 10\%
AP/IB Passing Rate (3 or higher) 10\%
Average SAT Total Score 5\%
Average ACT Composite Score 5\%

CHILDREN AT RISK Graduation Rate

C@R tracks first-time freshman who entered high school in the 2014-15, 2015-16, and 2016-17 school year. The three cohorts are followed to determine the percentage of students that have graduated from a Texas public high school by May 2019. The cohorts of students tracked are the cohorts established by TEA and must meet the TEA graduation, dropout, and completion rates for state and federal accountability standards. In the graduation rates calculated by TEA students who leave a Texas public high school due to death, homeschool, private school, or another school outside of Texas are dropped from the original freshman cohort under the assumption they are completing their education at another institution or are unable to due to death. C@R, however, only excludes students that leave a Texas public high school due to death. For each campus the highest of the four-, five-, or six-year graduation rate is assigned to a campus as their graduation rate for the school rankings analysis. Due to TEA's legal requirement to protect student privacy, some student data is masked. For example, if 5 or fewer students left a school due to death, a masked value is given. C@R substituted the masked value with 2.5 , the statewide mean of the possible value. At times these substitutions resulted in a graduation rate greater than 100%. In these cases, a school's final graduation rate was rounded down; they were assigned a graduation rate of 100%.

III. LETTER GRADES

For the PANDEMIC EDITION all campuses receive a special overall grades based on their Overall Composite Scores calculated using the below formulas. To see the cutoffs for a campus'
overall grade for the PANDEMIC EDITION of the School Rankings, see Appendix A.

Elementary + Middle Schools
(Student Achievement Score * 25\%) + (Campus Performance Score * 25\%) + (Average Growth Score * 25%) + (Racial Equity Score * 25%) = Overall Composite Score

High Schools

(Student Achievement Score * 20\%) + (Campus Performance Score * 20\%) + (Average Growth Score * 20\%) + (College Readiness Score * 20\%) + (Racial Equity Score * 20\%) $=$ Overall Composite Score

Once campuses are assigned a general letter grade, "A," "B," and "C" grades were further differentiated into plus/minus grades (e.g., "A+"). The range of Composite Index scores for each letter grade was divided evenly into thirds. The top third of Composite Index scores became "plus" grades and the bottom third of Composite Index scores became "minus" grades. The cutpoints are different for elementary, middle, and high schools because they are based on the unique sample of scores for the PANDEMIC EDITION's schools at each level.

IV. Data Collection

COLLECTION OVERVIEW

The data utilized in the school rankings analysis is collected by the Texas Education Agency (TEA). CHILDREN AT RISK receives a portion of the data directly from TEA through a public information request to the TEA data department. The other portion of the data utilized is downloaded from TEA's publicly available database, STAAR Aggregate Data, available here. CHILDREN AT RISK merges all of the data by campus ID number to create a comprehensive school profile in order to conduct the analysis. The STAAR exam data utilized in the School Rankings PANDEMIC EDITION analysis is from the 2016-17, 2017-18, and 2018-2019 school years. A small portion of students across Texas take modified versions of the STAAR exam. CHILDREN AT RISK does not include data on any of the modified STAAR exams in the school rankings analysis. The analysis does include students who take the STAAR exam more than once, not only those that pass at first attempt. Additionally, the data includes any student who takes the STAAR exam at a given campus, not only those included in the October Enrollment Public Education Information Management System (PEIMS) Snapshot.

CHILDREN AT RISK seeks to hold schools accountable for student performance on a variety of indicators including standardized tests, graduation rates, college readiness, and improvement over time - utilizing a holistic approach to our annual examination of school quality. The indicators included, weights applied to each indicator, and the weights applied to each of the
indices in the ranking analysis were determined by staff members in conjunction with influential members of the education community across Texas.

CAMPUS CLASSIFICATION

CHILDREN AT RISK used traditional grade ranges (elementary school EE-5, middle school 6-8, and high school 9-12) to determine each schools' classification. However, there are many possible grade ranges and many schools fall outside of traditional grade ranges. In response, CHILDREN AT RISK employed a systematic approach to ensure the most comprehensive and accurate picture of school performance relative to school peers is provided by including as many schools as possible. Schools are ranked in each category in which their data is complete for that particular range. For example, an EE-8th grade school is ranked as both an elementary and middle school, but a 4th-8th grade school would only be ranked as a middle school as their data for elementary would not be complete. This leads to some discrepancies due to the fact that schools will have a different rank in each of the classifications for which they are analyzed and assigned a rank and grade. While we recognize this as a limitation, CHILDREN AT RISK's goal is to provide parents and stakeholders with the most complete picture of school performance possible.

EXCLUDED SCHOOLS

For a school to be included in the school rankings, a campus must have complete data profile from the Texas Education Agency (TEA) for each of the indicators included in the analysis for each academic year. Any campus missing data for one or more indicators is excluded from the analysis. Campuses with fewer than 90 students enrolled are excluded from the rankings as there is not sufficient data to analyze the performance of their campus. Additionally, campuses under an alternative accountability system from TEA (i.e., disciplinary sites) and campuses confirmed to be undergoing a state or district investigation are also excluded from the annual analysis. Also, some schools are missing growth scores or STAAR aggregate data for a multitude of reasons. We are also unable to rank these schools. In the case that a campus had all indicators for two of the three academic years, statistical smoothing is used to include these campuses in the analysis. However, if a campus only has data available for one of the three years, they are excluded from the analysis.

HIGH SCHOOL FEEDER CAMPUSES

Recently, there has been an increase in campuses that serve a combination of 7th, 8th, 9th, and 1oth graders together who then transition into a senior high school upon completion of 9th or 10th grade. In an effort to provide the most complete picture possible, CHILDREN AT RISK merges these feeder campuses with their respective senior high schools. This is done to prevent dropping these campuses and senior high school campuses due to missing the data necessary to
calculate the graduation rate. This is only done for campuses where there is a direct feeder pattern from the 9th grade serving campus to the receiving senior high school campus.

SUBLISTS

After the school rankings analysis is completed at the state level, sub-lists are extracted to compare school performance of like campuses based on pre-determined inclusion criteria. Sublists include geographic sub-lists for the major metro-areas as well as peer sub-lists comparing schools based social and economic characteristics.

Geographic Sublists

The geographic sub-lists facilitate the comparison of individual campuses in the same major metro areas across Texas. The geographic areas are defined as follows:

- Greater Central Texas Area - Bastrop, Blanco, Burnet, Caldwell, Hays, Travis, and Williamson
- Greater Houston Area - Brazoria, Chambers, Fort Bend, Galveston, Harris, Liberty, Montgomery, and Waller
- Greater North Texas Area - Collin, Dallas, Denton, Ellis, Hunt, Johnson, Kaufman, Rockwall, and Tarrant
- Greater San Antonio Area - Atascosa, Bandera, Bexar, Comal, Guadalupe, and Medina
- Greater West Texas Area - El Paso, Lubbock, Ector, Midland, Hale, and Hockley
- Rio Grande Valley - Cameron, Hidalgo, Starr, and Willacy

Consistent Gold Ribbon Sublists

The Gold Ribbon schools highlight high-performing, high poverty schools that are traditional neighborhood campuses; magnet schools and charter schools are not included in the Gold Ribbon sub-lists. High poverty schools are identified as campuses that are more than 75% economically disadvantaged. Those campuses that receive an A or a B in the CHILDREN AT RISK rankings are considered high performing, high poverty. For the School Rankins PANDEMIC EDITION, this sublist will contain all campuses that have held Gold Ribbon Status for three years running.

Pace Setter Sublists

Pace Setters are Gold Ribbon eligible schools that have shown significant improvements from prior years and are on track to meeting all of the indicators of Gold Ribbon schools
in the future. Pace Setters are all Non-GR, GR Eligible Schools (schools with 75% or more of a campus' students classified as low-income that do not classify as charter or magnet programs) within the top 10th percentiles for Elementary, top 10th percentile for Middle, and top 20th percentile for High of improvement scores, which is the overall $\mathrm{C} @ \mathrm{R}$ score change from the previous year.

Pandemic Proof Sublists

Campuses are considered Pandemic Proof if they have consistently received A or B grades in the CHILDREN AT RISK School Rankings for the last three academic years and are campuses with 75% or more students classified as low income.

Racial Equity Sublists

The Racial Equity Sublist includes highest ranked schools according to C@R’s new Racial Equity Indicator serving the top quartile of economically disadvantaged and racially/ethnically diverse populations.

E. Study Limitations

There are numerous factors that affect the success of children and schools. Research shows some of the biggest factors for student success are parental involvement, social and emotional development, teacher quality and delivery of classroom instruction, participation in extracurricular activities, teacher and parent expectations of students, and engaging class work that stimulates critical thinking. However, there is no standard measure for any of these constructs, and it would be particularly difficult to collect these data efficiently and consistently for ranking nearly 8,000 schools.

DATA CONSTRAINTS

Another constraint is CHILDREN AT RISK's dependence on data collected by the TEA. Thus, the limitations posed by TEA data are valid criticisms for the school rankings analysis. Any erroneous data reported to or by TEA may have an impact on the rankings analysis and final results. Additionally, the CHILDREN AT RISK rankings are limited to campuses that have complete data available through TEA for all measures included in the rankings. Campuses without comprehensive data profiles or those with fewer than 90 students are excluded from the rankings despite the quality of their performance.

Beginning 2017-2018, Texas Education Agency (TEA) allows schools to substitute students' STAAR scores with ACT, SAT, and/or PSAT scores at the Meet Grade Level on the Algebra I,

English I, and English II End of Course Exam if aforementioned scores are at or above predetermined college ready cut scores. Districts who supply count of substitute exams by school and End of Course Exam were accounted for in the Student Achievement Index and the Campus Performance Index. However, if a school or district is unable to provide substitute exam information their scores are not accounted for in the two indices.

CHILDREN AT RISK's reliance on STAAR exam data has limitations for high school students. The performance of high schools on STAAR exams is a limitation, as there are only three required End of Course STAAR exams (Algebra I, English I, and English II). A portion of students take Algebra I in eighth grade; their data is not captured at the high school level due to an inability to tie the individual level data to their high school and the students do not retest in high school.

F. Appendix A

	Grade	Overall Grade
Elementary	A	≥ 65
School	B	50
	C	40
	D	30
Middle	F	<30
School	A	≥ 60
	B	45
	D	35
	F	25
	A	<25
High School	B	≥ 70
	C	55
	D	45
	F	35
		<35

G. Appendix B:

The district rankings take into account student achievement, campus performance, student growth, racial equity, and college readiness. Similar to the high school rankings, each domain is weighted equally (20\%). The domains were aggregated from the unique PANDEMIC EDITION campus level scores to the district level. Each district received an overall grades based on their Overall Composite Scores calculated by weighting each of the five domains equally. The cutoffs for the district grades were the same is those for middle schools (see Appendix A). Once districts were assigned a general letter grade, "A," "B," and "C" grades were further differentiated into plus/minus grades (e.g., "A+"). The range of Composite Index scores for each letter grade was divided evenly into thirds. The top third of Composite Index scores became "plus" grades and the bottom third of Composite Index scores became "minus" grades.

